

Comparison of SiC vs Si Technologies

Silicon vs Silicon Carbide	Performance of SiC Power Device	Impact on AC-DC/DC-AC Circuits
Higher Breakdown Field (10X)	Lower On-State Voltage Drop (2X-3X)	Higher Efficiency
Smaller Epitaxial Field (10X – 20X)	Faster Switching Speeds (100-1000X)	Size Reduction
Higher Thermal Conductivity (3.3-4.5W/cmK vs 1.5W/cmK)		Higher Continuous Current and Pulsed Power
Higher Melting Point (2X)	Higher Operating Temperature (3X)	Smaller, Simpler Heat Sink
Larger Bandgap (3X) Smaller n _i (10 ¹⁶ X)	Higher Intrinsic Adiabatic Pulsed Current Level (3X-10X)	Higher Current Capability

SiC Power Schottky Diode Products

Schottky Rectifiers

GB01SLT06-214 650V 1A SMB (DO-214) Production

GB01SLT12-220 1200V 1A TO-220 Production

GB01SLT12-252 1200V 1A TO-252 Production

GB01SLT12-214 1200V 1A SMB(DO-214) Production

GB02SLT12-214 1200V 2A SMB(DO-214) Production

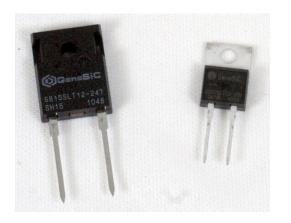
GB02SLT12-220 1200V 2A TO-220 Production

GB02SLT12-252 1200V 2A TO-252 Production

GB05SLT12-220 1200V 5A TO-220 Production

GB05SLT12-252 1200V 5A TO-252 Production

GB10SLT12-220 1200V 10A TO-220Production

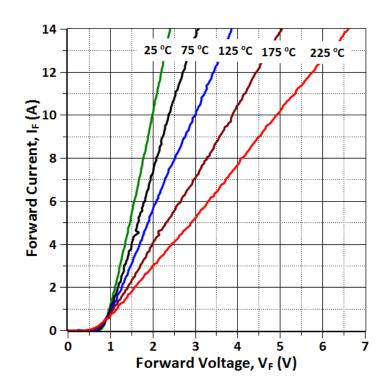

GB10SLT12-252 1200V 10A TO-252Production

GB20SLT12-247 1200V 20A TO-247Production

GB50SLT12-247 1200V 50A TO-247Production

GAP3SLT33-220FP 3300V 0.3A TO-220FP Production

GAP3SLT33-214 3300V 0.3A SMB(DO-214)Production



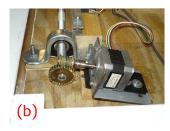
Performance of 1200V SiC Power Schottky Diodes

* Forward Characteristics

- GeneSiC Diodes are designed to operate at High temperatures (= 225 °C) and exhibit Low On State Voltages, thereby resulting in Low Conduction Losses
- Implementation of Optimized Device Design and Robust Processing Techniques allow GeneSiC Diodes to deliver
 Superior Surge Current
 Capability with Temperature Independent Barrier Heights and Ideality Factors

* GB07SHT12-247

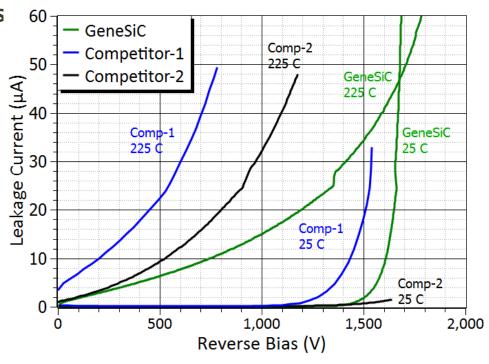
* Features/Benefits


- Operating temperatures up to 225 °C
- ➤ Industry's lowest device Zero Bias Capacitance and Reverse Recovery Charge
- ➤ Easy paralleling due to Positive Temperature Coefficient of V_f
- Temperature Independent Extremely Fast Switching Transients
- Improved Circuit Efficiencies
- Best in class Reverse Leakage Current at operating temperatures

SiC Schottky Rectifiers

* Applications

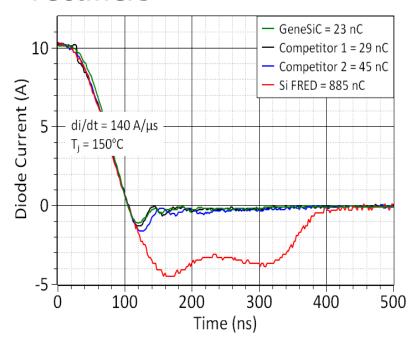
- Power Factor Correction
- Switch Mode Power Supply^(a)
- ➤ Inverter, Motor Drives(b)
- ➤ Induction Heating
- Uninterruptable Power Supply
- Down Hole Oil Drilling, Geothermal Instrumentation
- > Aerospace and Defense



Contd...

- Blocking Characteristics
 - GeneSiC 1200 V Diodes are designed to deliver Best-in-Class Blocking Performance with leakage current densities less than 1 mA/cm² even at 225 °C operating temperatures
 - ➤ GeneSiC diodes display smallest increase in the leakage current as the temperature is increased from 25 °C to 225 °C
 - The Blocking Performance is solely limited by Avalanche Breakdown

* 1200 V / 10 A SiC Schottky rectifiers



Contd...

- * Turn-Off Characteristics
 - GeneSiC Diodes offer Lowest
 Reverse Recovery Charge, Q_C
 and Lowest Figure of Merit, Q
 c/I_F for any current rating
 - Moreover, Q_C is independent of applied dI/dt, I_F and Temperature
 - Lower 'Q c' values will drastically reduce the switching losses in the inverter and converter applications

* 1200 V / 10 A SiC Schottky rectifiers

